N 69 20787
NASA CR100423

gngineeking Research Tustitute
UNIVERSITY OF MASSACHUSETTS
AMHERST, MASSACHUSETTS

Project NGR-22-010-012
Report No. 3

EXTENSION AND APPLICATION OF
A SEQUENTIAL ESTIMATOR

C. M. Brown, Jr. and R. V. Monopoli

January, 1969



EXTENSION AND APPLICATION OF A
SEQUENTIAL ESTIMATOR

By

C. M. Brown, Jr. and R. V. Monopoli

- NASA Grant NGR-22-010-012

Report No. 3

Richard V. Monopoli, Co-Principal Investigator

Charies E. Hutchinson, Co-Principal Investigator

January, 1969



ii

 ABSTRACT

This thesis extends and app1}es a particular sequentia1 estimation
technique. Firét a method is présented to increase the accuracy of the
estihator,'given bounds on the measurement noise. Second a method is
presentéd where some systems may'be estimated ddequate]y with é
greatly simpTified.éstimator which results in a Targe reduction in the
amount of computation required bj the estimator. Examples are discussed

showing how these methods,have been app]ied successfully.
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CHAPTER I
INTROCUCTION

The purpose of this repo%t_is to extend and apply the sequential
estimation technique reported i% [11, expanded in [2] and [3], and
utilized in [4], [5] and [6]. The thesis‘is divided into two major
parts. Chabter II deals with a method of improving state estimation
for non-linear tiﬁe varying systems. Chapter I1I deals with the
practical application of the above techniques and shows how the amount

of computation required by the estimator may be greatly reduced.

A. Purposé

The extension of the estimator improves estimation in a large class
of non-linear time varying systems. These systems are those which have
a scalar output which is a 1inear.combination Qf'the system states.
ThisAoutput_is corrupted by additive measurement noise. The technique
is based on the assumption that this noise has a known bound on its
amplitude. The improvement in estimation is with respect to a perfor-
mance index which is the integral of the sum of the squares of the
weighted estimation errors. This index is reduced by generating an
improved‘estimate‘of at least one bf,the,system states using the output
of the original estimator and knowledge of the bound on the measurement
noise. The advantage of this technidue is that it improves estimation

and can be implemented easily. In some cases it also assures convergence



of some of the estimation errors to finite bounds.

The second part of the report deals with the practical app11cat1on
of - the estimator d1scussed in [3]. In h1gh order systems the amount
of computation required by'the eStimator becomes extréme1y Targe so
that it is difficult to’imb]emen? the estimator in real time. For
some non-linear and/or time varying systems it is possible to "Tinearize"
the estimator in sueh a way that adequate if not optimal estimation
occurs, This is done by solving the matrix Riccati equation required
by the estimator for its steady state values by first removing the non~
linear and time vérying,terms from the system. These steady state
values are then used in the rema1n1ng estimator equations rather than
“those va1ues which would have come from the time varying solution of
the matrix Riccati equation. This great1y reduces the computation
required.by'the estimator because the métrix Riccati equation is only
“solved once and this may be done "off-line." The disadvantage of this
method is that the loss in estimation accuracy may vary greatly from
systém tobsysfem and that some systems cahnot be formulated in this

manner.

B. Summary of the Estimation T&chnique

Béfore proceeding, the basic estimation technique as developed in
[3] is surmarized. The problém considered is that of obtaining an
optimum estimate of the state of systems described by vector differentia1

equations of the form



x(t) = g (t, x) + 8g(t, x) + k(t, x)u(t) (1-1)

y(£) = h(t, %)+ v(t) (1-2)

Wheke x,,an‘h-vector,~is the system staté*yectorg go(t, X) is an n-vector
function thosé variation“with t and x s compTete1y known; Ag(t, x) and
k(t, x) are n-vector and nxq éectof fuhctions, respectively, whose
variations with t are unkhown;'u(t) is a g-vector unknown input which

is undefined in a stafist1Ca1_sense; h(t; X) is a known d-vector function;
y(t) is a d-vector output§ and‘y’isAa d-vector of observation errors

which are undefined in a statistical sense. The estimator is chosen to

satisfy the equation
x(t) = g (t, X) +w(t; X, y) (1-3)

where X, an n-vector, is any estimate of the state vector X, and
. wit, X, y) is anyn-Vectbr input to the estimator which is to.be deter-
mined. '

The optimum estimate of x(t); denoted by x(t) = i(t), will be
optimum in a least squares sense. That is, the estimation problem
soTvéd‘is the fo11ow1ng; ~given output'measurements y(t) in the interval
0 <t < tg, determine an‘estimate §(tf), df the current state vector

x(tf), which is optimum in the sense that it minimizes the functional

. kt'
al = JOf [”e](t)llé + ||e2(t);1ﬁ] dt (1-4)

where

and

Q

AW are generalized norms defined by



|
ey (9111 = €y (8)Taey (1) (1-5)

Tep(t)] 1§ = ep(t)THeplt) (1-6)

where Q and W are n x f positive definite matrices and the superscript

T denotes transpdse.‘ The following relations pertaining to (1-4) also

hold: y
eg(t) = y(t) - h(t, ®) (1-7)
e,(t) = F(t, X) = w(t, X, y) (1-8)
F(t, ) = ag(t, D) + k(t, Du(t) (1-9)

If equations (1-7), (1-8) and (1-9) are substituted into (1-4)

the result is:

Ji = jtf [Hy - h(t, %)HS + | [F(t, x) - w(t, X, y)||ﬂ'dt
S | (1-10)
The problem now is that of minimizihg (1-10) with respect to w(t, X, y),
subject to the constraint equation (1-3). It is noted that minimizing
the integral of the residual errors, i.e., e1(t) and e2(t), squared is
not'the same as-minihizing the 1ntegra1'of the estimation errors

squafed,‘wheke the estimation error is an n-vector defined by:
8(t) = x(t) - x(t) (1-11)

Hence, this leaves room for improvement in the estimator after the
optimization process has been carried out.

The solution of this optimization problem is now summarized.



Pontryagin's maximum principle is‘employed in this solution. Toward
this‘end, the Hamiltonian H(t,vi},A, w) is defined as
H(t, Xo04, w) = [y - h(t, Xl
+ ]1F(6, %) - w(t, X )1
+2T(g, (ts ) + w(t, X, ) (1-12)

where A, the Lagrange mu1t1p11er, 45 an n-vector.

~ The Hamiltonian 1s minimized with respect to w(t X, y¥) by setting

!

Hi

oH
ET_ 0 - (1-13)

Thevsolution of (]-13) yields

w(t, X, y) = flt, X) - %w‘h (1-14) -

-1

: * : , - . ‘
where w." is the optimum estimator input and W ° is the inverse of W.

The use of - (1-14) in,(1-12) Teads to

(%00 = [y - h(t, DG+ aTgg(ts D

T, X) - Avx Tl (1-15)

L . : S . * —
where x(t) is the estimate corresponding to w.(t, X, y).

it is necessary that i'anq A satisfy the canonical equations:
SET P
;(- = 'g"i" (ts .)-(-s‘ >\) A E "'""""' (t: Xy A ) (]']6)
E ' ' X
The terminal time te has been fixed, and x(0) and ?(tf) are free. Thus,

transver3a1ity'requires that:



A0) =0 Altg) =0 (1-17)

If the two point bouhdary value b?ob1em (heréafter referred to as
TPBVP) represented by (1-16) and (1-17) is solved, it yields %(tf), i.e.,
the least squares estimate of x(tf). ‘For a time greater than tf, say
ters the TPBVP must be solved again using‘the boundary conditions:
- a(0) =0 'x(tfi) =0 (1-18)
In order to avoid solving a differenf TPBVP for each value of final
time, the prob]ém is recast as a sequential problem in which tf is an
independent variabie, the running time variable. Thus, this TPBVP is
embedded in a 1arger'c1ass of TPBVP's. Let this TPBVP be embedded into

‘the larger class ofvTPBVP's with boundary conditions:,‘
x(0) =0 x(tf) = C (1-19)

The missing terminal condition on X is denoted by

x(tg) = r(C, tf) (1-20)

where C and .t are regarded as ihdependent variables. From (1-16). and

(1—19) it can be shqwn [1] that r(C, tf) must satisfy

. .
ar _ar aH e ]
Btf oC vaY’ (tf’ rs C) 3C (tf’ r, C) ('l 2])
where
- TP
ol [ 1] | (1-22)
o aCj nxn
S . rar.
ar_ [_.J.] | (1-23)
8 f atf nx1



B [BH*:‘ o TR
SR LR —_= =] (1-24)
r ar.]nx] ) [aci]nx1

Equation}(1-15) is sUbstituted'into (1-21) and an approximate solution
‘of the form

H(C, t) = PEC * X(t) (1-25)

s triéd. Expandihg.the result about r(0, tf)~and noting that only
those solutions for C = 0 are of interest, the sequehtia1 estimator

equations become:

~

%%% = go(ts X) + 2P(EIH(te, X)QUY(EE) = h(tg, )T +
fbe X (1-26)
%%;-? 9ox(tes x)P(t,) +‘P(tf)ggg(tfs X)
2P(t ) IHOLy(te) = htes X)1IgP(E) 2w (1-27)
where : ( A) ;
RNRE- 1 FOR o Teh(tL, x)N!
g.> = (t s X), H(‘t s X) = ____J.;..__.
oX 5 X e i f | l: 5
and '

[HQLy(ts) - h(tes X)31;

is an n x n matrix with ith column

2 [Hory(t,) - h(te, X)31
Xy | .

Note that equation (1-27) is known as the matrix Riccati equation.



CHAPTER II
EXTENDED £STINATOR

A. Probiem Definition

The estimator suﬁmarized in Chapter I is optimum in the sense that
.ft is‘de51gned to minimize the cost functjon J1 defined in (1-4).
:This cost function depénds only ihdirect]y,Upon the error fn estimation
defined in (1-11). It on1d be much better if an estimator could be

‘designed on the basis of minimizing the functional
Atfm-Z
J2=h 18615 dt (2-1)

where_g(t)_is‘the error in estimdtioh. This is a difficult problem
"which has hbt been so]ved for the:cfass of systems under consideration.
However, the eétipatorfde?e]oped 1ﬁ Chapter I has associated with it a
cost J2 for egch final time, tf. The problem considered in this chapter
is that?of generafihg a new’set}bf'estimates of x(t) based on the
origina1 estimate ;(t) and-oh the\bounds oﬁ the measurement noise which
are assumed_to bé known. The new estimates will reduce the value of J2
fof each tf from ;hat Va1Ue;geherated by the original estimates. Hence,
in é practica] sense the estimation has been improved. The value of the
original cost function J1 may be increased, but since J2 is a better

measure of the accuracy in estimation an increase in J1 is acceptable,



'B. Derivation of Extended Estimator

It is convenient to begin the derivation with a set of definitions.

Define:

x(t) -nx1 system state vector
;o(t) -n x 1 estimate of x(t),generated»by the estimator
summarized in Chapter I, Section B;
;m(t) - n x 1 improved estimate of x(t) to be derived in this
section,
go(t), - error in estimation
n ol ~ _
e, (t) = x(t) - xo(t) (2-2)
Em(t)‘f - reduced error in estimation
N o " ' _
em(t) = x(t) - xm(t) (2-3)
gAEo(t) - incremental change in‘estimation error
' " . v ' N _
Aeo(t) = em(t) - eo(t) (2-4)
J2, * - performance index for x (t)
32 [t 1% (6)]12 dt ) (2-5)
0 0 oY B
18 (8)]12 = & (t)TB (1) (2-6)
0 B 0" 70 _
92 - performance index for xm(t)
g = [t ([2 ()] |2 dt (2-7)
m m" B ‘
{ 0 : . -
& (]2 = & (£)788 (¢) (2-8)
m 1B m m

To‘obtain a solution to this problem it is nécessary to restrict the
n x n positive dgfihite matrix B to be diagonal. This makes the derivation

which follows possible. The restriction is reasonable because it makes
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the performance index equal to the integral of the sum of the weighted
squares of the estimation errors} This is a direct and clear-cut measure
of the accuracy of the est1mat1on. |

The object is now to f1nd sofe est1mate x (t), which insures that

for-a11~tf__

a2 -.J20 <0, (2-9)

If this cond1t1on ho]ds, then thé new estimate, X (t), is an improvement
over xo(t) with respect to the chosen performance index. The choice of

§m(t) is based on ‘the following:

(a) §0(t) - the original estimate

(b) y(t) -~ the measurements of the system
(¢) .y(t) = h(t, x) + v(t) - equation (1-2)
(d) vh(t, x) - knewn'function, Tinear in x(t)
(e) Voo | - bound ,6n magnitude of v(t)}

For Simp1iCity, this derivation'issumes that y(t) and v(t) are scalars.

Hence the bound on v(t) is'v , i.e.,

v(t)| < v forall t ., (2-10)

o I A ,
Using the above information X,(t) will now be derived such that the

inequality (2-9)_is‘safisf1ed for all t, 3_0;
The derivation;begin$ by using (2-5), (2-6), (2-7) and (2-8) to get

t
J2 - d2, = f f ”T BY dt - f f ol B, dt
0 Jp Mm-m 0

or
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Using (2-4), i.e., gm = 30 +.A@o in the above equation gives
L f 0 N W T 7y n __me
gz - 92 = JO' [(e + Ae0),B(eo,+ Aeo) eoBeQ] dt

0

f f [2a3TB% . AeTBAe L1 dt
o

32 - 32 f f ”Ts[ze vl ] dt (2-11)
Suppose a A8 can be found such that J2 - J2; < 0 for all t. > 0
and all go,'then from (2-2), (2-3) and (2-4)

N _m= _"‘fvi‘_' _A'

pE, = € - €)= (x - x) - (x-x))

Aeo = =X+ XO
‘or

Lo ~ n _

The estimate 20 is khowh'so the selection of‘Ago is equivalent to the
selection of Qm,-the improvéd'estimate,and condition (2-9) will be
satisfied.

Summarizing, pick'AEO such that

. _ I b Y B v _

sz Jzo, JO A€ B(Aeov+ 2@0) dt < 0 (2-13)
for all te 3;0 and all EO. When this problem is solved, the result is
that there sti11 remains some freedom in the choice of Ago' This freedcm
is used to minimize J2m - 020 so that the new estimate will be the

greatest possible improvement over x .

o The soTution of these prdb]ems

follows.

Since (2-13) must hold for all te and all 30, it 1SVSuff1¢ieht that
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the intégrand be nonpositive, i.e.,

-&T N n
AeO B(ée0}+ 2e0) ;_0
or. ‘
AT o a T, o
he, Bae  + 2AeO Beo_§_0 . (2-14)
Define ~ - -
v Nl
_Aeoi ol
1Y) Ny
| A2 | €02
qj_ ‘» {\,= L] -
he, = . e, ) (2-15)
n N
Ae e
on on
L _ L
and
by 0....0
| 0 bsz. .. 0
. B=1. . s . (2-16)

where bj.> 0 fori=1,2,..., n because B is positive definite.

Expanding (2-14) using (2-15) and (2-16) gives

A2 n2 ' A2 VY
Aeo]b] + Aeozb2 + eoe + Aeonbn + 2Ae0]eo1b] +

Ny . iy N '
Before going on With this result it is necessary to work with h(t, .x).
Since this function is assumed to be Tinear in x(t) it may be written as

h(t, x) = h](t)x1 + h2(t)x2 + oees 4 hn(t)xn (2-18)

where X; s the i;ﬁ;ﬁomponent of x(t) and the hi(t) fori=1,2, ... 5 N
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are known functions. With the object of satisfying (2-9),1n mind, pick

Agd in the fo]TOwiﬁg manner. Let
& = i (6)/b,) (2-19)
A€¢ T WNjARIBy e

for i= 1,.2, eee s N where the value of'd remains‘to be_se]ected. Then
Cusirig (2-19) in (2-17) and simplifying gives

2
a »

n ‘ n S
L 2 L y

Noting however that
h(t % ) = 7 h (t)%‘ (2-21)
then (2-20) becomes
2 3 n(£)%b, + 20h(t, ) < 0 (2-22)
’ gy 1 (R ol ="
Equation (2-2) and the Tinearity of h(t, x) gives
“h(t,¥) = h(t, (x - X)) = h(t, x) - h(t, X). (2-23)
Using (1-2) in (2-23)
h(t, &) = ¥(t) - v(t) - h(t, x,)

“and with this result (2-22) becomes

2 i

o

O~ S

g (6)2/b; + 2aly = h(t, %) - V(D) < 0. (2-24)

i=1

' For simplicity define.

i

n : ’
M(t) = -] h3(t)/b, (2-25)
Hi=] '
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Note that M(ﬁ) > 0 because each bi is positiye, .Define also
¥ =y - h(t, ;o) . (2-26)
S%mp]ifying.(2—24)'using (2-25) and (2-26) gives
o2M(t) + 2va - 2V < 0 . (2-27)

The problem is now to pick a value for o so that (2-27) holds for all
v(t), |v| < V> given known M(t) and y. Then (2-9) will be satisfied
and Ago and ;m can be geherated;

This wii] be done by finding a region R in the (y, a) plane where
(2-27) holds for all v(t) such that |v| < v_. This region R will be a
-function of M(t). |

Suppose o > 0, then (2-27) becomes .
oM+ 2y -2v<0 , (2-28)

Examine this inequality for the extremes of v.
(a) If v 5 V> then o < =(2/M)(y - vm). Since_a >0and M> 0,
this inequality is valid if and only if Y < V.
(b) Ifv
{c) Ifv

0, then q < -(2/M)(vy) for y < 0.

-v.» then o < =(2/M)(y + v ) for y < -v .

Since v may range anywhere within its bounds, the part of the R
region for o > 0 is thét region df the (y, o) plane where conditions
a, b and ¢ above hold simultaneously. A directly analogous argument
holds for fhe part of R when o < 0. See Figure 1 for a picture of the

region R derived above. |
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FIGURE 1. Region R

For ény given v a value of o may be chosen in R and (2-9) will be
satisfiéd'as desired. If |v| <'v_» then o is picked equal to zero and
(2-9) is‘still satisfied; Henéé, it is assured that with the above
selection of o, which determines 430 and finally Qm’ the difference
J2m - JZO wi]] be negative or zero for all tf and all 30. It is now a
matter of trying to pick the best value of o in R so that J2m - J20 will
be as negative as possible andyfhefefore give the largest improvement
in.estimation. | |

,Repeatfng equation (2-27) and setting the left side equal to g gives

B=’u2M+2y0L-2Voi_<_0 .
. T | |

Now minimize g with resbect to o in the region R by setting
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58 _
==0
BB: = -
-87;—0 20M + 2y 2v ,
So,
o = ~(y - v)/M(t) for (y, a) in R. (2-29)

Choosing o using equation (2-29) requires the knowledge of v to optimize
the choice, but v is tota]]y unknown except for its bounds. If the mean
of v were known it would be best to use its value in equation (2-29),

but since this is not known in general, any value of v within its bounds

will do. Pick v = 0 in (2-29) as the most convenient. Then (2-29) becomes
o = =y/M(t) for (y, o) in R,

This is equivalent to saying

a = ~y/M(t) for |y| > 2V . (2-30)
Recalling that |

a =0 for |y| < v (2-31)

it now remains to pick o when v < |y| < 2v . Assuming that the mean of
v is zero, it is best to pick o in R such that o lies as close as possible

to the optimum line given by (2-30). The result is

-Z&Y - v )/M(t) V%!f_y v (2-32)

o

20y + v ML) 2y <y <oV (2-33)

19
[}

1

See Figure 2 for a picture of o as a function of y as defined by (2-30),

(2-31), (2-32) and (2-33).



17

FIGURE 2. o as a Function of vy

The heavy line in Figure 2 represents the best choice of o as a
function 6? vy that can be made with the information available. If the
average value of v is known and non-zero, then this should be subtracted
from the original measurement y before the equations above are used.

The procedure for obtaining the new estimate §m is as follows:

(a) Calculate vy, i.e., } =y - h(t, ;o)‘

n
(b) Calculate M(t) = J hi(t)/b,.
i1

(c) Use Figure 2 to get o from vy and M(t).
(d) Use equation (2-19), i.e.,
N - s o
A€ s = (hi(t)/bi)“ for i =1, 2, ... ,n.
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(e) Finally use equation (2-12), i.e.,
X = x0 + Aeo

m

C. Experimental Results for Extended Estimator

The following examples are intended to illustrate the use of the
extended estimator derived in thé ]ast section. The example systems and
the estimators are simulated on é Control Data 3600 computer using a
basic Runge-Kutta integration routine.

Each of these experiments chsists of four parts. First, the
trajectory of the system is found by solving equation (1-1). Second,
the output data from this solution is corrupted with measurement noise
as in equation (1-2). Third, these noisy observations are used as
inputs to the original estimator outlined in Chapter I to generate 20‘
The cost of this estimate is ca1:u1ated using equation (2-5). Finally the
1mproved estimate Qm is generated using the extended estimator derived
in the last section and the cost of this estimate is calculated using
equatioh (2-6). EThe costs of the two estimators are then compared and
graphs are given‘showing x(t), §0(t), and ;m(t) for visual comparison
of the estimators.

The model used for the measurements corresponding to equation

(1-2) is

y(t) = h(t, x) + 0.1 « r](t) .

h(t, x)| + 0.1« ry(t) (2-34)

where h(t, x) is the variable measured and y(t) is the observed value
of this variable after it has been corrupted by measurement noise. For

the purposes‘of the examples which follow, this noise is_generated as
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shown in equation (2-34) where r](t) and rz(t) are two statistically
independent random variables which are uniformly distributed from +1 to
-1 for each t. This particular form of noise is chosen to demonstrate
that the estimation equations are independent of the statistical proper-
ties of the noise. The maximum value of this noise, v(t), is assumed
known and is calculated using the worst case conditions of equation

(2-34). Some knowledge of the bound on h(t, x) is assumed.

Example I

(a) The system trajectory is defined by

X| = Xy x](O) 2.0

Xy = =2Xy = 3x, * 5 sin ¢+ fo(t, x)  x,(0) = 1.0
where fz(t, x) is a time varying hon]inearity which is totally unknown

to the estimator. For this example fz(t, x) is defined as

-O;]tXS

fz(t, x) = -2e 1

to specify the system trajectory.
(b) The measurements are defined by
y = h(t, x) + v(t)

| )
where h(t, x) = X1 v(t) is defined by equation (2-34), andvn‘= 0.25.
(c) The original estimator as defined by equations (1-19) and

(1-20) is

>e

i
™

Xo1 = %oz * 2P11(¥ = %g7) %1(0) =

>e

1
o

Xgp = =2Xgq = 3X o + 5 sin T+ 2py(y = X 1) %,,(0)
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where f(t, 20) = is used because fz(t,,x) is unknown to the esti-
0l
mator. Fina]]y
p=gp+pgle ZE[HQ{ - h(t, X )35 P+ 2w
Yox Jox . > Tollx 2
0 0 0
where : - -
_|Pn P2 o0
P = Yox_ ~
Po1 P2 o |2 -3
] 1
H= Q = [1] W ='7~I
LO
[ 6 5l = |
HQ{y - h(t, x)1l; =
’ J %9 0 O

Since the system is linear the above equation for P may be solved for

steady state by setting P = 0 and the result is

P = 0.549266
Py, = Ppp = -0.198307
Py, = 0.285763

The estimates generated by the above equations correspond to go and the
cost of this estimate is found using (2-5) and (2-~6) with B taken as the
identity matrix.

(d) Finally, ;m is generated using theAprocedure outlined in the
last section and the cost of this estimate is found using (2-7) and
(2-8) with B again taken as the identity matrix.

With t; = 6 seconds the results of this experiment gre:
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Graph I. Example I
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Jzo = 3.156 - oricinal estimates
J2m = 2,583 - improved estimates
J2m - J20 = -0,577 :_0

This is about an 18% improvement in estimation with respect to the
given cost function and tf = 6 seconds. See Graph I for a plot of

these estimates.

Example II

(a) The system trajectory is the same as that of Example I.

(b) The measurements are defined as before by
y = h(t, x) + v(t)

where h(t, x) = %—x] - Xy v(t)éis defined by equation (2-34), and an
estimate of Vin gjves Vi T 0.4.

(c) The original estimator equations are derived from the system
equations using (1-19) and (1-20), but in this example the system's

e'0‘1tx3; is assumed known. Conse-

time varying nonlinearity, i.e.i -2
quently, this term affects the estimator and P equations. The systém;
is non-Tinear so that the P equations have no steady state solution.

The time varying solution must then be used. The initial condition on

the P equations is taken as

3 1
P(0) = ‘
1T 3

The original estimator equations are
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P s i A
X01 = Xo2 T (p]] - Zp]z)(y "7 ¥t xoz)
s - : -0.1t23
x02 = -2x01 - 3x02 + 5 s1h t -~ 2e x01 +

~

'| ~
*(pyg = 2P0 (Y - 3 X + Xgp)

) 1 2
Py = 1% 2p1p = 5 (pyq - 2pgp)

. S0.1t%2
Pip = Py = 3Pyp = 2pq (1 + 3e 7" x ) +

N
tPyo(Prp = 3 Pyy - 2P50) + PyyPyy

20.7t~2

- 1 2
Ppp = 1 = 6Py = Apyp(1 + 387 xGy) = 7 (pyy - 2ppy)

with P12 = Poi-
As before the cost of this estimate is calculated,but for demonstra-

tion purposes the weighing matrix B may be defined as

)

(d) The improved estimate ;m is generated and its cost is found
using B above.
Two sets of results are obtained for this problem. First, if the

initial conditions on §0 are chosen as
xo](O) =0 'x62(0) =0

the resuit for_tf =6 sécqnds is

JZO = 2.117

J2m

% improvement = 50%

1.159
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Graph I1I. EXamp]e II
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This result is plotted in Graph iI. In the second case, the initial

conditions on ;o are chosen as:
xo](O) =2 »on(o) =0

The result for tf = 6 seconds is:

"

J2_ = 0.074

0

Je

m 0.047

% improvement = 30%

This result is not plotted because the error in estimation is too small
' to be seen clearly.

| It should be noted that the large improvement in both estimates

1

for this case is due to starting the estimate of §01 at the true value

of x](O), i.e.,

201(0) = x,(0) , <

Example III

(a) The system trajectory is defined by

1]
1

X] = %5 x,(0) = 0.5

i

0.0

X, =(1 = a)x X,(0)
where A is a constant but unknown parameter variation. For the purpose
of this example A is set at 0.25, but this value does not affect the
estimator in any way because it is assumed unknown.

(b) The measurements are defined by

y = h(t, x) + v(t)
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where h(t, x) = a(t)x] +x, for a(t) = 2 + sin (0.5 t). v(t) is a
random variable with a uniform distribution from +0.1 to ~0.1. Hence,
Vi = 0.1.

(c) The original estimator as defined by equations (1-26) and

(1-27) is: .

Xo1 = Xgp + 2[a(t)pqq + Ly - (a(t)xy * X )] %,;(0) = 0

i]

XOZ = -XO-I + z[a(t)pz] + p22][‘y - (a(t)xo] + on)] XOZ(O) =0
P12 = P23

: 2

Py = 1+ 2ppp - 2(a(t)pgy + pyp) Py1(0) = 0

sz = péz =Py - Z(a(t)p]] + P12)(a(t)P12 + P22) p]Z(O) =0

. 2
Pos 1 - Zp]z - 2(a(t)p]2 + p22) pZZ(O) =0

The derivation of the above used the following:

.| X . 0.
6y(ts ;) = | .02 aglt, x)) = | .
~Xo1 b Xo1

: .

qQ=[1] W= %—1

a(t) 0 1
H = g~ =

B % -1 0

Since o is unknown to the estimator
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~ o
f(t, x)) = u

The cost of this estimate is defined by (2-5) and (2-7) with

b

2 0

(vs]
i]

0 1

(d) ;m is generated using the procedure outlined in Chapter II,

Section B, and the cost of this estimate is found using the given B

matrix. |

For a final time of 12 seconds the results are:
J20

J2m

% improvement = 29%

0.287

0.204

See Graph III for a plot of these results. Inspection of this graph
reveals that at certpin times, i.e., t = 3.75 seconds, tre improved
estimate appears to %e'worse than the original estimate.i However,A
ca]cu1at16n of the instantaneous cost or the integrands bf the cost
functions J20 and JZm at any such time relative to the g}ven B mat#ix
demonstrates that §m is more accurate than Qo' The diffﬁcu]ty lies in
the fact that some components of X will lose accuracy if others are
improved. The cost function J2m however is a function of all components

of'gm and it is the overall cost that is less, not the cost relative to

any single component of ;m’
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D. Comments on the Extended Estimator

The extended estimator improves estimation in all of the examples
tested. The largest improvement occurs when the original estimator is
doing a poor job, and the improvement is negligible if the original
estimator is estimating accurate]y. The main advantage of this technique
is to improve estimation during tge initial period when the estimator
is converging on ﬁhe correct estimates or after some disturbance to the
system which causes a large jump in the estimation error. The technique
is relatively simple to implement once the original estimator has been

constructed, and it has 1ittle effect on the estimation if the estima-

tion is accurate.
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CHAPTER III
SIMPLIFIED ESTIMATOR

A. Problem Definition

The problem discussed in this chapter™is the practical application
of the estimation technique summarized in Chapter I, Section B. It isg
desired that a way be found to reduce the large amount of computation
necessary for this estimator so that it may be implemented in a more
practical manner. It is shown that for some non-linear and/or time
varying.systems it is possib?e to f]inearize" the estimator in such a
way that adequate if not optima]vestimation occurs. First the non-
Tinear and time varying;terms are removed from the system and the matrix
Riccati eqyatiOn is solved for s%eady state using the remaining linear
syQtem. Then thesé sieady state values are used in the estimation
equations derived from the full non-linear and/or time varying system.
This greatly reduces the computation reduired by the estimator because
the matrix Riccati equarion need<on1y be solved once. It is also

convenient that this solution is:run "off—line."

......

Using equations (1-1), (1-2) and (1-9) the system equations can be

written as:

it

X(t) = gy(ts X) + £(t, ) (3-1)

h(t, x) + v(t) (3-2)

y(fc)
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The original estimation equations (1-26) and (1-27) for this system
are: ;

= g, (ts %) *+ 2P(D)H(L, X)QL(E) = h(t, X)} + F(t, %)

>
i

1

P Iox(ts X)P + sz;(t, x) + 2P[HQLy - h(t, ;)}]§p e L

The use of these equations requires thét the f(t, %) term be set to zero
since f(t, x) is the unknown part'of the system. Hence, the actual,

but unknown, value of f(t, x) affects the above equations onIyKindirect{y
through the measurements of the %ystem output, i.e., y(t). Likewise, the
form of f(t, x) has no effect on the form of the final estimator equations
because f(t, x) is assumed totally unknown.

The -appearance of f(t, ;) in the estimator suggests that it might be
possible to use this term to simplify the equations, This is done by
bfeaking up go(t, x) into two parts. Let the first part contain all of
the linear terms of go(t, x) and the second part contain all of the non-

Tinear and time varying terms. ‘let
g,(ts x) = Ax + s(t, x) (3-3)

where A is an n x n constant matrix and s(t, x) is a non-linear and/or

time varying n-vector. Now write the system equation (3-1) as

x = Ax + f'(t, x) (3-4)
where

frt, x) = s(t, x) + f(t, x). (3-5)

The equations o% the simplified estimator are generated from (1-26) and
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(1-27) with Ax in the role of go(t,,x) and f'(t, X) in the role of
f(t, x) even though f'(t, x) is ot completely unknown as assumed in
the derivation of the original estimator.
Originally the f(t, ;) term of the estimator was set to zero
because it was unknown; but in the simplified estimator this term becomes
f'(t, Q) which is partially known. In this estimator f(t, §) is again

set to zero which gives:
£1(t, %) = s(t, X) | (3-6)

The estimator equations with all of the above changes become the

equations of the simplified estimator. These equations are

~

X

AX + 2PH(t, X)QLy(t) - h(t, x)} + s(t, X) (3-7)

.

AP + PAT + 2P[HQ{y - h(t, X)IIoP + %-w“ (3-8)

)
I

This estimator is much simpler than the original estimator because the

P equation may be solved for a sieady state solution. This solution
may be found beforehand and the constant P which results is denoted by
Pegs j.e., P steady state. The use of PSS greatly reduces the amount
of further computation required by the estimator. The existence of this
steady state solution for P is a consequence of the!fact that the
differential equation for P depends only upon the Tinear part of the
system. PSS is found by setting P =0 in the P equation, (3-8), and

solving the resulting equation for PSS; The simplified estimator is now:

X = Ax + 2P__H(t, x)QUy(t) - h(t, X)} + s(t, X) (3-9)
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It should be noted that the optimization of this estimator is
carried out assuming that s(t, x) is completely unknown. The simplified
estimator, thereforé, cannot be optimum because the optimization was
carried'out'partia11y ignoring the form of the non-linear and time
varying terms in the system. This is the price that must be paid
for the simp]ification that is achieved.

There are two major theoretical drawbacks to this simplification
technique. First, if the non-linear and time varying terms of the
system play a dominant role in the response of the system, the estima-
tion will probably be very poor because the form of these terms is
partially ignored in the optimization process. Second, the solution
of P = 0 for PSS may lead to difficulty. This solution depends on the
A matrix and on h(t, x), thevfunction which relates the measurements
to the states of the system. Since this A matrix represents only part

of the true system it may not be possible to find an adequate solution
for PSS. A and h(t, x) may be_sﬁch that no steady state solution for
PSS exists. This happens if A is not contro11ab1e or if h(t,‘x) is
time Varying. Estimation in this case is either impossibie or nonsense.
Consequently, the applicability of this technique depends entirely on

the problem at hand.

C. Experimental Results for the Simplified Estimator

In this section an example is given which demonstrates the advantages
of the simp]ified estimator for a case where it is applicable. Any particu-
lar problem must be examined carefully to see if this technique can be

used.
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(a) The system is defined by:

X1 = X5 x1(0) 2.0

kz = -2%; - 3%, + 5 sin (t) - 2e'0']tx? x2(0)

it

1.0

(b) The measurements are defined by
Y= Xt
where v = 0.1 . Ix]l * 1y + 0.1 ré. r and r, are independent random
variables, uhiform1y distributed from +1 to -1. This results in
Vo = 0.25.
(c) The full scale estimator as defined by equations (1-26) and

4
(1-27) is

22 = -221 - 3;2'+ 5sint - 2eft/10§?'+ 2p21(y - 21)
21(0) =0 §2(o) =0

P12 = P2

° _ + 2 2

Pyp = 1+ 2(pyp - pyy)

_ ~t/10.2

P12 = Pogp = 3Ppp = 2P (T + 327770 + pyy)

. 2 ~t/10.2

P = 1= 2Py = 6ppp = 4pp(1 + 3¢ )

P]](0)1= 3 P]Z(O) =1 péz(o) = 3

This estimate is plotted in Graph IV.

(d) A possible technique of reducing the amount of computation
: o ; |
required by the full estimator above would be to completely ignore
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the non-1inear term

2e7t/10,3

which appears in the original system equations. If this is done, the
remaining system is linear and a simpler set of estimation equations is
derived

17 %o+ 2000y - %) x;(0) = 0

M re DN e

g = 2% = 3%y + 5 sin (t) + 2y (y = X)) X,(0) = 0

with the steady state solution of the P equations:

pyq = 0.549266
Pyp = Py = -0.198307
Py, = 0.285763

This estimate is plotted in Grapg V, and comparing this with Graph IV
it is obvious that this method of simplifying the estimator gives rather
poor results.

(c) The simplified estimator described earlier in this chapter
is now tested and compared with the results of the two estimators above.
The importaht equations are

X

2
g,(ts x) = Ax + s(t, x) = D }
0 2%, - 3x, - 2"t/10,3
, 1 2 ]
where ' ,
0 1 ( ) 0
A= s{t, x) =
2 -3 , 2¢"t/10,3

. | , [
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Then
£1(t, x) = s(t, x).

Using equations (3-7) and (3-8) and solving for the steady state P

matrix the estimation equations become:

SRR N X0
iz = -2&1 - 3;2 + 5 sin (t) + 2p2](y - §1) - 2eft/10x? 22(0)
pyq = 0.549266

Pop = -0.198307

Notice that this estimator is exactly the same as the one derived in b
above except the non-linear time varying term appears as an input. This
means that fhe amouné of computation requiréd by the two methods is
practically the same, which in both cases is much less than that of the
full scale estimator. The trajéctory of this estimator is p]qtged in
Graph VI and the estimation is obviously much better than that of thei
other simplified estimator. It is not as good as the full sca1q ;
estimator, however. This Toss in estimation accuracy was expecfed.
The cost of these three estimates was calculated using (2-1) with B equal
to the identity matrix and tf = 6 seconds. The results are: |
Cost Computer
J2. Time (sec)
Full Estimator 1.87 134
Linear System Estimator 5.13 100

i

Simplified Estimator © 3.87 101

]
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L Cost J2 = 1.87

Graph IV. Full Estimator



38

- was wes v o

Cost J2 = 5,13
]‘s

Graph V. Linear System Estimator
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Cost J2 = 3.87

Graph VI. Simplified Estimator
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D. Comments on the Simplified Estimator

The advantage of the simplified estimator is the reduction in
computation required in estimatién. Thjs'reduction becomes much greater
as the order of the system to be estimated increases. The full estimator
requires that the P equation, i.é., the matrix Riccati equation, be
solved each time the estimator ié used. This equation is a non-Tinear
time varying matrix différentia] equation and its solution amounts to
solving n(n + 1)/2 first order non-linear time varying interdependent
differential equations b%cause if is found to be a symmetric matrix
differential equation. fhis is gn excessive amount of computation for
any high order system. Fhe simplified estimator, however, insures that |
the P equation has a steady state solution which must only be solved
for once. This so1utionéis run Eeforehand and the steady state values
of P are used in the estimator. Now, wpen the estimator is used only n
differential equations must be solved rather than n + n(n + 1)/2 equations.
This is very convenient assuming that the loss in estimation accuracy
can be accepted in exchange for the reduction in computation. This Toss
in estimation accuracy is a funcfion of the system that is to be
estimated and will vary greatly from system to system.

This technique depends on splitting up the system into a linear and
a non-linear part, and the principal part of the estimator depends on the
linear part of the system. The major problem is that many systems may not
have a linear part. Those systems which do have Tinear terms still may

not have enough linear terms around which a reasonable estimator may be

derived. If the A matrix which resu]ts'from the linear part of the system
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is not controllable then it cannot be assured that a steady state
solution for the P matrix exists. If h(x, t) is time varying then no
steady state solution exists. If the nonlinear terms in the system are
the major terms which determine ﬁhe response of the system, then the
estimation may be very poor»beca&se these terms were not considered

in the optimization of the estimator.. However, if none of the above
occurs in a particular prob]em, then the simplified estimator may be

used to great advantage as demonstrated.
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CHAPTER IV
CONCLUSIONS AND SUGGESTIONS

This report describes two techniques designed to make the sequen-
tial estimator summarized in Chapter I more useful. The first suggests
a way of improving the accuracy of the estimator given knowledge of the
bounds on the measdrement noise; The second suggests a way of reducing
the amount of computation involved in estimation by giving up some
accuracy. Both techniques have definite Timitations and their use
must be determined by a careful analysis of the problem at hand.

This report is an attempt to improve upon a basic sequential
estimation technique. Further work along this line might Tead to more
methods of improvement, but it seems that any major improvement would
have to come from a more basic analysis of the whole estimation problem
rather than from trying to improve upon’an estimator whose basic design

has already been determined.
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